WORDS, PEOPLE, AND IMPLICIT PERSONALITY THEORY

CLINTON B. DE SOTO, MARGARET M. HAMILTON, AND RALPH B. TAYLOR
Johns Hopkins University

One hypothesis about implicit personality theory holds that laypersons’ beliefs about how personality traits covary are based on semantic overlap or linguistic similarity among the trait words involved. Words that can describe both people and things (Asch’s physicalistic metaphors, “warm,” “cold,” “hard,” “soft,” “sweet,” “sour,” “bright,” “dull”) were employed in a test of this hypothesis. In learning and memory tasks, these words were paired either with names of people or with nonsense syllables or paralogs. Subjects’ patterns of errors when names were used as stimuli resembled trait inference patterns derived from other methods. When nonsense syllables or paralogs were used as stimuli, the error patterns did not resemble trait inference patterns. Instead, the most frequent confusions were intradimensional (opposites) confusions and intramodality (somesthetic) confusions. It is argued that trait inferencing is a fundamental process in person cognition, spontaneous, coercive, and persistent; and that implicit personality theory is, in fact, a theory about people and is not reducible to linguistic similarity among trait terms.

One of the most hotly debated topics in social psychology has been the significance of the inferences that people so readily make from one personality trait to another, or what has been called “implicit personality theory” (Bruner & Tagiuri, 1954; Schneider, Hastorf, & Ellsworth, 1979).

Guilford (1954), in his widely influential analysis of errors in ratings, introduced the view that the correlations obtained in ratings of personality traits reflect mainly the semantic overlap of the trait words. Although they differ in detail, a number of subsequent writers are in essential agreement with Guilford’s view that semantic overlap or conceptual similarity of trait words is largely responsible for the correlational patterns commonly observed in trait ratings and trait inferences.
(Ebbesen & Allen, 1979; Loehlin, 1967; Mulaik, 1964; Shweder, 1982). This view effectively reduces implicit personality theory to a linguistic artifact.

DUAL-FUNCTION WORDS AND THE COGNITION OF PERSONS AND THINGS

One way to separate the contribution of implicit personality theory from semantic overlap would be to study the use of trait words when they are applied to persons and when they are applied to nonpersons or things. Unfortunately, the majority of trait words (e.g., “intelligent,” “cautious”) apply only to persons or to personified things.

There are, however, exceptions. Asch (1958) has noted that many words commonly used to describe psychological properties also have physical referents; they are, as Asch puts it, physicalistic metaphors or dual-function terms. The trait terms made famous by Asch’s (1946) study of impression formation, “warm” and “cold,” are outstanding examples. “Hard,” “soft,” “bright,” “dull,” “sweet,” and “sour” are other familiar ones.

And Asch has argued quite persuasively that these dual usages are indeed instances of metaphor or polysemy, not homonymy or homography. Concerning *hard* and *soft*, for example, Asch says,

> What are we trying to say when we call a thing, say the surface of a table, *hard?* We mean that it resists change when pushed or pressed, that it supports other things placed upon it without changing its own form. Hardness is resistance to change imposed by external forces; it describes a mode of interaction. Correspondingly, what is *soft* takes on the form of things acting upon it, as does the tablecloth that follows the contour of a surface. What now is the sense of *hard* when it refers to a person? It describes an interaction that is formally similar. We see a man refusing the appeal of another. This interaction we experience as a force proceeding from one person, having as its aim the production of a change in the other, which, however, fails to move him, or which produces *resistance*. The hardness of a table and of a person concerns events radically different in content and complexity, but the schema of interaction is experienced as dynamically similar, having to do with the application of force and of resulting action in line with or contrary to it. (Asch, 1958, pp. 92-93)

In effect, Asch is arguing that “*hard*” and “*soft,*” along with numerous other dual-function terms, are the same words in the sense of having the same core meanings whether they describe people or tables.

Asch also provides another kind of evidence that supports this
argument—cross-cultural evidence from unrelated languages (Old Testament Hebrew, Homeric Greek, Chinese, Thai, Malayalam, Hausa, and Burmese). All these languages possess dual-function words or morphemes, and the pairings, although not identical over languages, are impressively similar. "Sweet," for example, seems to be used universally to describe positive psychological qualities, but not just any positive qualities; in general, it describes qualities that might be characterized as pleasant or soothing.

Asch's position is similar to that taken later by Miller and Johnson-Laird (1976), who propose that there is a single core concept or schema that underlies the senses, meanings, or interpretations of a word in different contexts (pp. 676–677). It is likewise similar to that taken by Caramazza and Grober (1976), who argue that a "core meaning" underlies all uses of a word, and develop a dynamic model in which "instruction rules" operate on core meanings to produce (or construct) specific senses of words.

Asch's dual-function terms provide a unique tool for the study of relations (implications, inferences, similarities, co-occurrences, etc.) among words when they are in the service of implicit personality theory and when they are not. To the extent that relations among these words are invariant over applications to persons and things, one would be forced to conclude that implicit personality theory is no more than a misnomer for essentially linguistic phenomena. If the relations do vary, one would have evidence of an implicit personality theory separable from, at least, the core meanings of the words.

Are, for example, the relations among "warm," "cold," "hard," and "soft" the same or different when they are applied to persons and nonpersons? There is evidence of a definite pattern of relations among these terms in the literature on implicit personality theory. Rosenberg, Nelson, and Vivekananthan (1968), using a multidimensional scaling approach to the study of trait co-occurrence ratings, found "warm" to be located toward the "soft" end of the "hard-soft" axis, whereas "cold" was located toward the "hard" end. Their data indicate that "warm" and "soft" are seen as tending to co-occur, as are "cold" and "hard." Their data do not provide information about the basis for these perceived co-occurrences (i.e., whether they are attributable to similarity, causal implication, or other factors). There is evidence that the halo effect is not important, however, inasmuch as the "hard-soft" axis was virtually orthogonal to the "good-bad" axis.

The critical question is this: Are the "warm-soft" and "cold-hard" associations specific to implicit personality theory, or are they manifestations of more pervasive properties of the words? Are "warm" and "soft" seen as co-occurring as part of a theory about human traits, or because the words "warm" and "soft" have some kind of similarity
or overlap of meaning? Is the perceived co-occurrence pattern best understood as a phenomenon within implicit personality theory, or, alternatively, as a linguistic phenomenon?

PATTERNS OF ERRORS IN LEARNING AND MEMORY

Various investigational procedures could be used to address the question. Most of them involve judgmental or rating tasks, which are rather sensitive to perceived experimenter demands and/or subjects' interpretations of the task. These procedures would not provide data yielding an ideally strong or compelling answer to the question posed.

In recent years, increasing numbers of investigators have used learning and memory tasks in the study of social schemas and the organization of social information. Particularly relevant to implicit personality theory is the bias-toward-prototype effect found in trait recognition and recall tasks (Brewer, Dull, & Lui, 1981; Cantor & Mischel, 1977; Tsujimoto, 1978). For recall tasks, Taylor and Crocker (1981) conclude that "the finding that subjects' reconstructions of persons and events show schema-relevant intrusions is extremely robust" (p. 105). And in multiple-trial learning experiments, errors involving schema-relevant intrusions have also been consistently reported (De Soto & Bosley, 1962; Walker, 1976).

On the basis of these studies, it can be predicted that traits (e.g., "warm" and "soft") that are seen as co-occurring in rating tasks will elicit one another in appropriate learning and memory tasks. For the present experiments, a task introduced originally by De Soto and Bosley (1962) was chosen. This task is similar to the classical paired-associates learning task in that subjects learn to give responses to stimuli, but different in that the responses are a small set of labels chosen with regard to their potential confusability. Unlike most learning and memory tasks, which are concerned basically with accuracy or speed, this task is concerned explicitly with the patterning of errors. In the present experiments, subjects were required to learn to give labels such as "warm," "cold," "hard," and "soft" as responses to stimuli, which were a set of names in some conditions and a set of nonsense syllables or paralogs in other conditions.

EXPERIMENT 1: "WARM−SOFT−COLD−HARD" CONFUSIONS

On the basis of the findings by Rosenberg *et al.* (1968) about perceived co-occurrence, it was hypothesized that "warm" and "soft" would be confused relatively frequently (i.e., names for which the correct answer was "soft" would, during the course of learning, rather frequently be
miscalled "warm," while "warm" names would be miscalled "soft"). Similarly, it was predicted that "cold" and "hard" would be confused with relatively high frequency. It was predicted that "warm-hard" and "cold-soft" confusions would be less frequent.

These general predictions ignored the issue of linguistic similarity versus implicit personality theory as explanations for the co-occurrence findings. Refined predictions testing the competing theoretical positions could also be made.

The hypothesis of linguistic similarity would predict that "warm-soft" and "cold-hard" confusions should be more frequent than "warm-hard" and "cold-soft" confusions, regardless of whether the stimuli are names or nonsense syllables. In short, the hypothesis of linguistic similarity would predict a main effect for label pairs, but no interaction of label pairs with stimuli.

Under the hypothesis of implicit personality theory, the use of names should be crucial to the patterning of confusions. The presentation of names should lead the subjects to treat the labels as traits, with an accompanying expectation of co-occurrence (hence confusion) of "warm" and "soft" and of "cold" and "hard." The use of nonsense syllables as stimuli, on the other hand, would make it unlikely that subjects would treat the labels as traits, effectively removing any expectations of co-occurrence rooted in implicit personality theory. There should no longer be differential confusions of "warm" and "soft," "warm" and "hard," "cold" and "soft," and "cold" and "hard." In other words, under the hypothesis of implicit personality theory, there should be an interaction of label pairs and stimuli.

Finally, it is worth noting that purely linguistic considerations could lead to a prediction that opposites should be most confused ("warm" with "cold" and "hard" with "soft"). The argument would be that opposites (antonyms) share all their semantic components or features except for a single contrast (Clark & Clark, 1977). In order to be opposites, words have to mean almost the same thing. To put it differently, subjects might learn which dimension or attribute ("warmth" or "hardness") applies to a name or syllable, while still showing confusions as to which pole of the dimension ("warm" vs. "cold" or "hard" vs. "soft") is correct. Intradimensional confusions could be more of a problem than interdimensional confusions.

METHOD

Subjects

The subjects were 28 Johns Hopkins University undergraduates. Half were male, half female, divided equally between the two experimental conditions.
Materials
For the condition using names as stimuli, 16 common surnames (e.g., "Anderson," "Davis," "Evans") were typed on one side of 16 index cards. On the other side of each card was typed one of the four labels ("warm," "cold," "hard," or "soft"); the labels were randomly assigned to the names with the restriction that each label was used four times. Two 16-card decks were prepared with two different random assignments of the labels to the names. Each deck was used for half the subjects in the condition.

For the condition using nonsense syllables as stimuli, 16 consonant-vowel-consonant trigrams (e.g., "BYF," "DUT," "GOM") were typed on one side of 16 index cards; one of the four labels was typed on the other side of each card. In this condition also the labels were randomly assigned, four times each, and two versions of the deck were prepared and used.

Procedure
Each subject was run individually. The subject was told that he or she was serving in an experiment on memory, and the details of the task were described. On the initial trial, the subject was shown the front (stimulus) and the back (label) of each card for 5 seconds. On the second and all subsequent trials, the subject was shown the front of the card (i.e., the name or nonsense syllable) and given 5 seconds to respond by giving the appropriate label. At the end of this time the subject was shown the back of the card. After each trial, the cards were reshuffled and the procedure repeated until the subject performed two successive trials without an error.

RESULTS
For analysis, confusions (errors) were divided into three types: inference ("warm-soft" and "cold-hard" confusions), noninference ("cold-soft" and "warm-hard" confusions), and opposites ("warm-cold" and "hard-soft" confusions). The percentage of confusions of each type was calculated for each subject. Table 1 shows the mean percentages of confusions of each type for names and nonsense syllables separately. An analysis of variance yielded a significant interaction of confusion types and stimulus conditions, $F(2, 52)=4.86, p < .05$. For the names condition, a comparison of the inference and noninference means was significant, $F(1, 13)=5.48, p < .05$. A comparison of the inference means for names and syllables approached significance, $F(1, 26)=3.61, p = .069$.
TABLE 1

"Warm–Cold–Hard–Soft" Confusions (Percentages)

<table>
<thead>
<tr>
<th></th>
<th>NAMES</th>
<th>SYLLABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Warm–soft,"</td>
<td>42.9</td>
<td>34.0</td>
</tr>
<tr>
<td>"cold–hard"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(inference)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Cold–soft,"</td>
<td>29.8</td>
<td>26.8</td>
</tr>
<tr>
<td>"warm–hard"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(noninference)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Warm–cold,"</td>
<td>27.3</td>
<td>39.2</td>
</tr>
<tr>
<td>"hard–soft"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(opposites)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For the syllables condition, a comparison of the opposites mean (39.2) with the pooled inference and noninference means (30.4) approached significance, $F(1, 13) = 4.40, p = .056$.

EXPERIMENT 2: "WARM–COLD–HARD–SOFT" CONFUSIONS ON 3-DAY RECALL TRIAL

The second experiment was an investigation of name–trait pairings in long-term memory. In an initial acquisition session using the same experimental method as Experiment 1, 30 subjects learned "warm," "cold," "hard," and "soft" as labels for 16 surnames to a criterion of one error-free trial. Three days later, they were given a single test trial.

Table 2 shows the patterning of errors during the acquisition trials and on the 3-day recall trial. The results for the acquisition trials replicated those of Experiment 1. A comparison of the inference and noninference means was significant, $F(1, 29) = 8.96, p < .01$.

On the 3-day recall trial, retention was quite good; the mean number of errors for the 16 items was 3.57. Two subjects made no errors. For the 28 who made errors, the patterning of errors was similar to and as pronounced as that observed during acquisition. A comparison of inference and noninference means was significant, $F(1, 27) = 4.85, p < .05$.

TABLE 2

"Warm–Cold–Hard–Soft" Confusions (Percentages) for Names during Acquisition and on 3-Day Recall Trial

<table>
<thead>
<tr>
<th></th>
<th>ACQUISITION</th>
<th>RECALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Warm–soft,"</td>
<td>45.5</td>
<td>48.4</td>
</tr>
<tr>
<td>"cold–hard"</td>
<td>(inference)</td>
<td></td>
</tr>
<tr>
<td>"Cold–soft,"</td>
<td>28.4</td>
<td>23.7</td>
</tr>
<tr>
<td>"warm–hard"</td>
<td>(noninference)</td>
<td></td>
</tr>
<tr>
<td>"Warm–cold,"</td>
<td>26.0</td>
<td>27.9</td>
</tr>
<tr>
<td>"hard–soft"</td>
<td>(opposites)</td>
<td></td>
</tr>
</tbody>
</table>
EXPERIMENT 3: “SWEET–SOUR–BRIGHT–DULL” CONFUSIONS

A third experiment was performed aimed at demonstrating the classic halo effect, or the “good–bad” axis of the multidimensional space of Rosenberg et al. (1968). From Asch’s findings and from Anderson’s (1968) work on likableness ratings of personality trait words, “sweet,” “sour,” “bright,” and “dull,” were selected as dual-function words with high and low desirability in their social usage. It was predicted that “sweet” and “bright,” both socially desirable, should be confused when used as labels for names, as should “sour” and “dull,” both socially undesirable. It was predicted that no strong inferences should be made among these terms when used as labels for nonsense syllables.

METHOD

The subjects were 36 Johns Hopkins University undergraduates, 18 in each experimental condition. The materials were similar to those used in the first experiment, except that women’s first names (e.g., “Betsy,” “Carol,” “Ellen”) were used rather than surnames. The procedure was modified to be somewhat less time-consuming. Instead of displaying the materials to each subject visually, the experimenter read the stimuli (names or syllables) aloud to the subject, and also read the answers (labels) aloud to the subject when the subject failed to give them correctly.

RESULTS

As for the earlier experiments, confusions were divided into three types: inference (“sweet–bright” and “sour–dull” confusions), noninference (“sweet–dull” and “sour–bright” confusions), and opposites (“sweet–sour” and “bright–dull” confusions). Table 3 shows the mean percentages of confusions of each type for names and nonsense syllables separately. An analysis of variance yielded a significant interaction of confusion types and stimulus conditions, $F(2, 68) = 5.00, p < .01$. A comparison of the inference means for the names and syllables conditions was significant, $F(1, 34) = 4.58, p < .05$. The predictions for this experiment were well supported.

For the syllables condition, a comparison of the opposites mean (40.1) with the pooled inference and noninference means (30.0) was significant, $F(1, 17) = 11.11, p < .01$. This finding reinforces the indication in Experiment 1 that intradimensional errors occur with high frequency when the stimuli are nonsense syllables.
TABLE 3
"Sweet–Sour–Bright–Dull" Confusions (Percentages)

<table>
<thead>
<tr>
<th></th>
<th>NAMES</th>
<th>SYLLABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Sweet-bright," "sour-dull" (inference)</td>
<td>49.1</td>
<td>33.2</td>
</tr>
<tr>
<td>"Sweet-dull," "sour-bright" (noninference)</td>
<td>22.0</td>
<td>26.7</td>
</tr>
<tr>
<td>"Sweet-sour," "bright-dull" (opposites)</td>
<td>23.4</td>
<td>40.1</td>
</tr>
</tbody>
</table>

The fourth experiment was an effort to demonstrate simultaneously the two kinds of inferences obtained separately in the earlier experiments. "Warm," "cold," "hard," and "soft" were included from Experiment 1, and "bright" and "dull" were included from Experiment 3.

It was predicted from the findings in Experiments 1 and 2, as well as from the configuration reported by Rosenberg et al. (1968), that "warm–soft" and "cold–hard" confusions would have high frequency for names. The evidence for confusions based on a "good–bad" dimension (halo effect) in Experiment 3 led to a prediction that "warm–bright" and "cold–dull" confusions also would be high for names. ("Warm" and "bright" both had very high likableness ratings in Anderson's [1968] study, and "cold" and "dull" had very low ones. "Hard" and "soft" were not included in his list.)

A prediction that "soft" and "bright" would both be confused with "warm" might seem to imply that they would be confused with each other. However, this would not necessarily be the case if the bases for the confusions—the grounds or reasons for the inferences—were different. And the two-dimensional configuration reported by Rosenberg et al. (1968) provided evidence that this indeed need not be the case. Rosenberg et al. found that the "good–bad" and "hard–soft" dimensions were almost orthogonal to each other. "Warm" fell midway between "good" and "soft"; "cold" fell midway between "bad" and "hard."

Another factor that could be considered in Experiment 4 was sensory modality. "Warm," "cold," "hard," and "soft" all refer to somesthetic sensations or experiences, whereas "bright" and "dull" are visual. Thus, Experiment 4 made it possible to compare intramodality confusions with cross-modality confusions.
METHOD

The subjects were 52 Johns Hopkins University undergraduates, 26 in each experimental condition. The materials and procedure were similar to those of Experiment 3, except that 18 women’s first names were used as stimuli, and each of the six labels was used three times. In an effort to maximize comparability of the two kinds of stimuli, paralogs (Woodworth & Schlosberg, 1954) were used instead of consonant–vowel–consonant nonsense syllables, and they were roughly matched with names (e.g., “aub” with “Ann,” “elz” with “Eve,” “fape” with “Faye”). Two 18-card decks were prepared with random assignment of the labels to the names, and two with random assignment of the labels to the paralogs.

RESULTS

Table 4 gives results for this experiment. An analysis of variance yielded a significant interaction of confusion types and stimulus conditions, $F(2, 100) = 7.71, p < .001$. A comparison of the inference means for the names and paralogs conditions (40.0 and 29.1) was significant, $F(1, 50) = 7.71, p < .001$.

For the names condition, the comparison of the somesthetic (“warm-soft,” “cold-hard,” “cold-soft,” and “warm-hard”) mean confusions (16.6) with the cross-modality (“warm-bright,” “cold-dull,” “cold-bright,” “warm-dull,” “soft-bright,” “hard-dull,” “hard-bright,” and “soft-dull”) mean confusions (12.1) was not quite significant, $F(1, 25) = 3.98, p = .057$. For the paralogs condition, the comparison of the somesthetic mean confusions (16.4) with the cross-modality confusions (11.7) was significant, $F(1, 25) = 10.78, p < .01$.

<table>
<thead>
<tr>
<th>TABLE 4</th>
<th>‘Warm–Cold–Hard–Soft–Bright–Dull’ Confusions (Percentages)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NAMES</td>
</tr>
<tr>
<td>“Warm-soft,” “cold-hard” (inference)</td>
<td>23.9</td>
</tr>
<tr>
<td>“Warm-bright,” “cold-dull” (inference)</td>
<td>16.1</td>
</tr>
<tr>
<td>“Soft-bright,” “hard-dull” (noninference)</td>
<td>10.9</td>
</tr>
<tr>
<td>“Cold-soft,” “warm-hard” (noninference)</td>
<td>9.3</td>
</tr>
<tr>
<td>“Cold-bright,” “warm-dull” (noninference)</td>
<td>8.3</td>
</tr>
<tr>
<td>“Hard-bright,” “soft-dull” (noninference)</td>
<td>13.0</td>
</tr>
<tr>
<td>“Warm-cold,” “hard-soft,” “bright-dull” (opposites)</td>
<td>18.5</td>
</tr>
</tbody>
</table>
For both the names and paralogs conditions, the mean percentage of opposites confusions was close to the 20% that would be expected on a purely chance basis (3 of the 15 possible types of confusions in this experiment were opposites).

DISCUSSION

The results of these experiments strongly support a conclusion that the associations observed among the dual-function words when they are used as trait descriptors have specifically to do with implicit personality theory and do not inhere in the core meanings of the words. "Warm" and "soft" are seen as co-occurring as part of a theory about human traits, not because of conceptual or linguistic similarity or semantic overlap, and not because they mean the same thing.

In accord with the prediction from the Rosenberg et al. (1968) configuration, it was found in Experiment 4 that inferences or confusions could be nontransitive—that is, "soft" went with "warm," and "warm" went with "bright," but "soft" did not go with "bright." This finding further limits the explanatory power of semantic similarity in accounting for implicit personality theory.

Indeed, semantic similarity seems most applicable to the patterning of confusions for the nonsense syllables and paralogs conditions. The tendency to confuse opposites noted for the nonsense syllables conditions in Experiments 1 and 3 would appear to be an effect of semantic similarity, inasmuch as opposites have a great deal of semantic overlap. And if the distinction between sensory modalities (somesthetic vs. visual) made in Experiment 4 is viewed as a semantic one, the semantic similarity effect (greater intramodality than cross-modality confusions) was somewhat stronger for the paralogs condition than for the names condition.

It is important to emphasize that implicit personality theory was spontaneously employed by our subjects in performing the learning tasks set before them. In contrast to most experimental investigations of implicit personality theory (Winter & Uleman, 1984), the present procedures did not overly request subjects to produce or to reflect upon trait inferences. To the contrary, trait inferences were actively discouraged, since subjects were told such responses were errors. That they continued to make trait inferences testifies to the strength and irrepressibility of the subjects' implicit personality theories.

The finding in Experiment 2 that subjects' errors on a 3-day recall trial showed the same patterning as during acquisition trials suggests an interesting possibility about the way in which subjects ultimately
mastered the name-label pairings. It suggests that the subjects' final representation of a name-label pairing included both the property specified by the experimenter and the one inferred by the subject. In learning that "Ann" was "warm," the subject did not discontinue inferring that "Ann" was "soft," but learned to discontinue saying so.

This suggestion is consistent with the view that trait inferencing is strongest for memory-based ratings as contrasted with immediate behavioral observations (Guilford, 1954; Shweder, 1982). But it has trait inferencing play a more significant role in memory for persons than do views that it is a matter of carelessness or lack of training (Guilford, 1954) or sheer oversimplification.

The subjects were relatively inefficient at remembering specifically that "Ann" was "warm," but even if they failed to recall that specific fact, they frequently demonstrated that they retained some information about her by calling her "soft." The subjects insisted on treating "Ann" as a fleshed-out person who was "warm" along with other qualities, very likely including "soft." When queried about "Ann," the subjects often reported the "wrong" property (i.e., "soft"). And according to the analysis of errors on the 3-day recall trial, even as the subjects mastered the experimental requirement of calling "Ann" "warm" and only "warm," they maintained an elaborated representation of "Ann" encompassing more than the task seemingly called for.

Perhaps the elaborated representation derives from a prototype or schema activated by the particular set of traits with which the subject is presented (Schneider & Blankmeyer, 1983). "Warm" and "soft" may be a subset of or may conform to a common prototype or schema, along with "warm" and "bright," "cold" and "hard," and "cold" and "dull." In contrast, other pairs of traits may not occur together in common prototypes or conform to a schema (e.g., "soft" and "bright," "hard" and "dull," "warm" and "hard," "cold" and "soft"). In any case, the automaticity and persistence of trait inferencing or prototype activation in a memory task to which it is superficially irrelevant suggest that trait inferencing plays a key role in social cognition generally.

We should note finally that the dual-function words, although useful in isolating the effects of implicit personality theory, constitute only a minority of the universe of trait terms. But the findings with dual-function words point up an easily overlooked fact about other trait words: this is that their referents are people, and inferences among such trait words are likely to reflect theories about people, not adventitious linguistic phenomena.

As Shweder (1982) has argued, implicit personality theories may bias a person's conception of how traits covary in the real world and may lead to erroneous conclusions about the structure and stability of
personality. Nonetheless, we believe that it is a mistake to view implicit personality theory as a defect or weakness in the layperson. Implicit personality theory is not an artifact of instructions or experimenter demands; it is not a sign of carelessness; and it is not a linguistic artifact. It is a phenomenon to be studied, not a nuisance to be eradicated.

REFERENCES

